Search results for "Statistics - Machine Learning"
showing 10 items of 90 documents
Disentangling Derivatives, Uncertainty and Error in Gaussian Process Models
2020
Gaussian Processes (GPs) are a class of kernel methods that have shown to be very useful in geoscience applications. They are widely used because they are simple, flexible and provide very accurate estimates for nonlinear problems, especially in parameter retrieval. An addition to a predictive mean function, GPs come equipped with a useful property: the predictive variance function which provides confidence intervals for the predictions. The GP formulation usually assumes that there is no input noise in the training and testing points, only in the observations. However, this is often not the case in Earth observation problems where an accurate assessment of the instrument error is usually a…
PerceptNet: A Human Visual System Inspired Neural Network for Estimating Perceptual Distance
2019
Traditionally, the vision community has devised algorithms to estimate the distance between an original image and images that have been subject to perturbations. Inspiration was usually taken from the human visual perceptual system and how the system processes different perturbations in order to replicate to what extent it determines our ability to judge image quality. While recent works have presented deep neural networks trained to predict human perceptual quality, very few borrow any intuitions from the human visual system. To address this, we present PerceptNet, a convolutional neural network where the architecture has been chosen to reflect the structure and various stages in the human…
Study design in causal models
2012
The causal assumptions, the study design and the data are the elements required for scientific inference in empirical research. The research is adequately communicated only if all of these elements and their relations are described precisely. Causal models with design describe the study design and the missing data mechanism together with the causal structure and allow the direct application of causal calculus in the estimation of the causal effects. The flow of the study is visualized by ordering the nodes of the causal diagram in two dimensions by their causal order and the time of the observation. Conclusions whether a causal or observational relationship can be estimated from the collect…
The Weighted Tsetlin Machine: Compressed Representations with Weighted Clauses
2019
The Tsetlin Machine (TM) is an interpretable mechanism for pattern recognition that constructs conjunctive clauses from data. The clauses capture frequent patterns with high discriminating power, providing increasing expression power with each additional clause. However, the resulting accuracy gain comes at the cost of linear growth in computation time and memory usage. In this paper, we present the Weighted Tsetlin Machine (WTM), which reduces computation time and memory usage by weighting the clauses. Real-valued weighting allows one clause to replace multiple, and supports fine-tuning the impact of each clause. Our novel scheme simultaneously learns both the composition of the clauses an…
Kernel Anomalous Change Detection for Remote Sensing Imagery
2020
Anomalous change detection (ACD) is an important problem in remote sensing image processing. Detecting not only pervasive but also anomalous or extreme changes has many applications for which methodologies are available. This paper introduces a nonlinear extension of a full family of anomalous change detectors. In particular, we focus on algorithms that utilize Gaussian and elliptically contoured (EC) distribution and extend them to their nonlinear counterparts based on the theory of reproducing kernels' Hilbert space. We illustrate the performance of the kernel methods introduced in both pervasive and ACD problems with real and simulated changes in multispectral and hyperspectral imagery w…
A General Framework for Complex Network-Based Image Segmentation
2019
International audience; With the recent advances in complex networks theory, graph-based techniques for image segmentation has attracted great attention recently. In order to segment the image into meaningful connected components, this paper proposes an image segmentation general framework using complex networks based community detection algorithms. If we consider regions as communities, using community detection algorithms directly can lead to an over-segmented image. To address this problem, we start by splitting the image into small regions using an initial segmentation. The obtained regions are used for building the complex network. To produce meaningful connected components and detect …
Ignorance-Aware Approaches and Algorithms for Prototype Selection in Machine Learning
2019
Operating with ignorance is an important concern of the Machine Learning research, especially when the objective is to discover knowledge from the imperfect data. Data mining (driven by appropriate knowledge discovery tools) is about processing available (observed, known and understood) samples of data aiming to build a model (e.g., a classifier) to handle data samples, which are not yet observed, known or understood. These tools traditionally take samples of the available data (known facts) as an input for learning. We want to challenge the indispensability of this approach and we suggest considering the things the other way around. What if the task would be as follows: how to learn a mode…
Predicting overweight and obesity in later life from childhood data: A review of predictive modeling approaches
2019
Background: Overweight and obesity are an increasing phenomenon worldwide. Predicting future overweight or obesity early in the childhood reliably could enable a successful intervention by experts. While a lot of research has been done using explanatory modeling methods, capability of machine learning, and predictive modeling, in particular, remain mainly unexplored. In predictive modeling models are validated with previously unseen examples, giving a more accurate estimate of their performance and generalization ability in real-life scenarios. Objective: To find and review existing overweight or obesity research from the perspective of employing childhood data and predictive modeling metho…
Local Granger causality
2021
Granger causality is a statistical notion of causal influence based on prediction via vector autoregression. For Gaussian variables it is equivalent to transfer entropy, an information-theoretic measure of time-directed information transfer between jointly dependent processes. We exploit such equivalence and calculate exactly the 'local Granger causality', i.e. the profile of the information transfer at each discrete time point in Gaussian processes; in this frame Granger causality is the average of its local version. Our approach offers a robust and computationally fast method to follow the information transfer along the time history of linear stochastic processes, as well as of nonlinear …
The Regression Tsetlin Machine: A Tsetlin Machine for Continuous Output Problems
2019
The recently introduced Tsetlin Machine (TM) has provided competitive pattern classification accuracy in several benchmarks, composing patterns with easy-to-interpret conjunctive clauses in propositional logic. In this paper, we go beyond pattern classification by introducing a new type of TMs, namely, the Regression Tsetlin Machine (RTM). In all brevity, we modify the inner inference mechanism of the TM so that input patterns are transformed into a single continuous output, rather than to distinct categories. We achieve this by: (1) using the conjunctive clauses of the TM to capture arbitrarily complex patterns; (2) mapping these patterns to a continuous output through a novel voting and n…